Formalism
Definition
Spacetime configurations
Properties
Spacetimes
black hole spacetimes | vanishing angular momentum | positive angular momentum |
---|---|---|
vanishing charge | Schwarzschild spacetime | Kerr spacetime |
positive charge | Reissner-Nordstrom spacetime | Kerr-Newman spacetime |
Quantum theory
black holes in 3d gravity with negative cosmological constant
The Euclidean BTZ black hole is a hyperbolic 3-manifold homeomorphic to (the interior of) the hyperbolic solid torus, hence to the knot complement of the unknot in the 3-sphere.
(e.g Gukov 03, appendix A, Kraus 06, around Fig. 1, BKR 07, 2.1)
Notice that the volume of the hyperbolic solid torus is not finite. Therefore this hyperbolic 3-manifold knot complement does not count as a “knot complement with hyperbolic structure” in the sense of Thurston‘s classification of 3-manifolds? (see also this MO discussion).
The original BTZ black hole with trivial internal topology is due to:
Máximo Bañados, Claudio Teitelboim, Jorge Zanelli, The Black Hole in Three Dimensional Space Time, Phys. Rev. Lett. 69 (1992) 1849-1851 (arXiv:hep-th/9204099)
Máximo Bañados, Marc Henneaux, Claudio Teitelboim, Jorge Zanelli,
Geometry of the 2+1 Black Hole, Phys. Rev. D48: 1506-1525, 1993 (arXiv:gr-qc/9302012)
The generalization to arbitrary black holes in 2+1-dimensional AdS gravity, with generally non-trivial internal topology:
Stefan Aminneborg, Ingemar Bengtsson, Dieter Brill, Soren Holst, Peter Peldan, Black Holes and Wormholes in 2+1 Dimensions, Class. Quant. Grav. 15 (1998) 627-644 (arXiv:gr-qc/9707036)
Stefan Aminneborg, Ingemar Bengtsson, Soren Holst, A Spinning Anti-de Sitter Wormhole, Class. Quant. Grav. 16 (1999) 363-382 (arXiv:gr-qc/9805028)
Dieter Brill, Black Holes and Wormholes in 2+1 Dimensions, In: Cotsakis S., Gibbons G.W. (eds) Mathematical and Quantum Aspects of Relativity and Cosmology. Lecture Notes in Physics, vol 537. Springer, Berlin, Heidelberg (arXiv:gr-qc/9904083, doi:10.1007/3-540-46671-1_6 )
See also:
Aritra Ghosh, Chandrasekhar Bhamidipati, Thermodynamic geometry and interacting microstructures of BTZ black holes (arXiv:2001.10510)
Roberto Emparan, Antonia Micol Frassino, Benson Way, Quantum BTZ black hole, JHEP11 (2020) 137 (arXiv:2007.15999)
Pablo Bueno, Pablo A. Cano, Javier Moreno, Guido van der Velde, Regular black holes in three dimensions (arXiv:2104.10172)
Matías Briceño, Cristián Martínez, Jorge Zanelli, On the central singularity of the BTZ geometries [arXiv:2404.06552]
In view of the cosmic censorship hypothesis:
Via topological M-theory:
See also:
Discussion of Euclidean BTZ black holes/thermal AdS3 (the hyperbolic solid torus), partly with an eye towards black hole entropy computed via AdS3/CFT2:
Kirill Krasnov, Holography and Riemann Surfaces, Adv. Theor. Math. Phys. 4 (2000) 929-979 (arXiv:hep-th/0005106)
Kirill Krasnov, around Figure 6 of: Analytic Continuation for Asymptotically AdS 3D Gravity, Class. Quant. Grav. 19 (2002) 2399-2424 (arXiv:gr-qc/0111049)
Kirill Krasnov, Black Hole Thermodynamics and Riemann Surfaces, Class. Quant. Grav. 20 (2003) 2235-2250 (arXiv:gr-qc/0302073)
Sergei Gukov, Appendix A of: Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the A-Polynomial, Commun. Math. Phys. 255: 577-627, 2005 (arXiv:hep-th/0306165)
Per Kraus, Lectures on black holes and the correspondence, Lect. Notes Phys. 755: 193-247, 2008 (arXiv:hep-th/0609074)
Micha Berkooz, Zohar Komargodski, Dori Reichmann, Thermal , BTZ and competing winding modes condensation, JHEP 0712:020, 2007 (arXiv:0706.0610)
M. Cadoni, M. Melis, Holographic entanglement entropy of the BTZ black hole, Found. Phys. 40: 638-657, 2010 (arXiv:0907.1559)
(relation to holographic entanglement entropy)
Ingmar Saberi, around Figure 4.3 of: Knots, Trees, and Fields: Common Ground Between Physics and Mathematics (doi:10.7907/Z9VX0DHZ, pdf)
(with generalization to p-adic string theory)
See also:
Zhen-Ming Xu, Bin Wu, Wen-Li Yang, Thermodynamic curvature and isoperimetric inequality for the charged BTZ black hole (arXiv:2002.00117)
(not Euclidean, but thermodynamic)
Discussion of BTZ black hole entropy and more generally of holographic entanglement entropy in 3d quantum gravity/AdS3/CFT2 via Wilson line observables in Chern-Simons theory:
Martin Ammon, Alejandra Castro, Nabil Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 (arXiv:1306.4338)
Jan de Boer, Juan I. Jottar, Entanglement Entropy and Higher Spin Holography in , JHEP 1404:089, 2014 (arXiv:1306.4347)
Alejandra Castro, Stephane Detournay, Nabil Iqbal, Eric Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 (arXiv:1405.2792)
Mert Besken, Ashwin Hegde, Eliot Hijano, Per Kraus, Holographic conformal blocks from interacting Wilson lines, JHEP 08 (2016) 099 (arXiv:1603.07317)
Andreas Blommaert, Thomas G. Mertens, Henri Verschelde, The Schwarzian Theory - A Wilson Line Perspective, JHEP 1812 (2018) 022 (arXiv:1806.07765)
Ashwin Dushyantha Hegde, Role of Wilson Lines in 3D Quantum Gravity, 2019 (spire:1763572)
Xing Huang, Chen-Te Ma, Hongfei Shu, Quantum Correction of the Wilson Line and Entanglement Entropy in the Chern-Simons Gravity Theory (arXiv:1911.03841)
Eric D'Hoker, Per Kraus, Gravitational Wilson lines in (arXiv:1912.02750)
Marc Henneaux, Wout Merbis, Arash Ranjbar, Asymptotic dynamics of gravity with two asymptotic regions (arXiv:1912.09465)
and similarly for 3d flat-space holography:
Arjun Bagchi, Rudranil Basu, Daniel Grumiller, Max Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114, 111602 (2015) (arXiv 1410.4089)
Rudranil Basu, Max Riegler, Wilson Lines and Holographic Entanglement Entropy in Galilean Conformal Field Theories, Phys. Rev. D 93, 045003 (2016) (arXiv:1511.08662)
Wout Merbis, Max Riegler, Geometric actions and flat space holography (arXiv:1912.08207)
Discussion for 3d de Sitter spacetime:
Discussion of BTZ black holes via tensor networks in the p-adic AdS/CFT correspondence:
Matthew Heydeman, Matilde Marcolli, Sarthak Parikh, Ingmar Saberi, Nonarchimedean Holographic Entropy from Networks of Perfect Tensors (arXiv:1812.04057)
Stephen Ebert, Hao-Yu Sun, Meng-Yang Zhang, Probing holography in -adic CFT (arXiv:1911.06313)
Last revised on April 11, 2024 at 03:19:23. See the history of this page for a list of all contributions to it.